ASBESTOS HEALTH EFFECTS CONFERENCE

SESSION 4. RISK ASSESSMENT METHODS PANEL DISCUSSION

PRESENTATION BY: MORTON LIPPMANN, PH.D., CIH NELSON INSTITUTE OF ENVIRONMENTAL MEDICINE NYU SCHOOL OF MEDICINE TUXEDO, NY 10987 USA

TOPIC: RISK ASSESSMENT OF NONOCCUPATIONAL EXPOSURES TO ASBESTOS HOLISTIC OVERVIEW

A. HUMAN EXPERIENCE (Asbestos Epid.)

B. ANIMAL INHALATION

C. "INTRATRACHEAL

D. "INTRAPERITONEAL

E. IN-VITRO

Other Mineral

Vitreons

2. Cellular responses

FIGURE 4-1 Relation between in vivo weighted half-life of fibers in short-term inhalation experiments and K_{dis} . Source: Adapted from Maxim et al. (1999a).

Figure 6 Total incidence of lung tumours in rats chronically exposed by inhalation to various mineral fibres as a function of the concentration of fibres >10 μm in length.

Table 2 Mesotheliomas produced by asbestos in chronic rat inhalation studies

Type of Asbestos	Source	Tumours/animals
Zimbabwe chrysotile		
Wagner, et al==-10 mg/m	UICC	0/44
Davis, et al ^{-s} —10 mg/m ^s	UICC	0/44
— 2 mg/m ³	UICC	1/42
Davis, et al ²⁹ —10 mg/m ³ (1 day/week)	UICC	0/43
Overall	0100	1/169 (0-6%)
Quebec chrysotile		1,103 (0.070)
Wagner, et al ¹² —10 mg/m ³	UICC	
Davis, et al ²ⁿ —10 mg/m ³		4/44
—10 mg/m³	Short	1/40
Hesterberg, et al 35—10 mg/m3	Long	3/40
Overall	NIEHS	1/69
Davis-Wagner subset		9/193 (4.7%)
_		8/124 (6.5%)
Amphiboles Wagner, et al ²³ :		
Crocidolite —10 mg/m	UICC	2/44
Amosite—10 mg/m³	UICC	0/46
Anthophyllite—10 mg/m ³ Davis, et al ²³ :	UICC	2/46

Crocidolite—5 mg/m ³	UICC	1/43
Crocidolite—10 mg/m ³	UICC	0/40
Amosite—10 mg/m ³ Davis, et aF ² :	UICC	0/43
Amosite—50 mg/m³ (1 day/week)		
Wagner, et al":	UICC	0/44
Crocidolite—10 mg/m	THEC	1/04
Davis, et al ⁵⁰ :	UICC	1/24
Tremolite-10 mg/m3	Korea	2/39
Davis, et al.4;	Rorea	2/39
Amosite—10 mg/m ³	Short	1/42
—10 mg/m ³	Long	3/40
McConnell (personal communication):	Long	3/40
Crocidolite—10 mg/m	UICC	1/69
Overall	0.00	13/520 (2.5%)
Davis-Wagner subset		12/451 (2.7%)

UICC = International Union Against Cancer, Lyon. NIEHS = National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.

 $C_{opt} = 0.003C_S + 0.997C_L$

where:

- "C_s" is the concentration of asbestos structures between 5 and 10 μm in length that are also thinner than 0.5 μm; and
- "C_L" is the concentration of asbestos structures longer than 10 μm that are also thinner than 0.5 μm.

CONCLUSIONS + HYPOTHESES (MY PERSONAL SYNTHESIS)

1. LONG FIBERS (> 10 pm)

A. INTERCEPTION DEPOSITION IN

LUNG CONDUCTIVE AIRWAYS

B. NOT CLEARED BY MACROPHAGES

C. FOR CHRYSOTILE - LESS DISSOLUTION

THAN FOR SHORTER FIBERS

D. STIMULATE ROS

E. FOR CHRYSOTILE - MORE DISSOLUTION
THAN FOR AMPHIBOLES

LONG FIBER CONCENTRATION

(fiber count or surface)

IS A CRITICAL DETERMINANT

OF LUNG CANCER RISK

- 2. INTERMEDIATE LENGTHS (5-15 Jun)
 - A. MORE LIKELY TO TRANSLOCATE
 - B. HEED TO BE BIOPERSISTANT
 TO GET TO MESOTHELIAL SITES
 - C. FIBERS RETAINED IN LUNG TISSUE PROVIDES POOR INDEX OF FIBERS THAT TRANSLOCATE.
 - ... INTERMEDIATE LENGTH FIBER
 CONCENTRATION MAY BE A
 CRITICAL DETERMINANT OF
 MESOTHELIOMA RISK

SHORT LENGTHS (25 Mm) NOT DIFFERENT FROM OTHER (NON-FIROUS) SILICATE MINERALS, i.e., A NUISANCE

4. INTERMITTENCY OF EXPOSURE AND DOSE

A. SHORT OF DUST OVERLOAD

(NOT TO BE EXPECTED FOR

ENVIRONMENTAL EXPOSURES)

NOT LIKELY TO AN IMPORTANT INFLUENCE ON DEPOSITED DOSE

- B. DOSE IS NOT INTERMITTENT FOR DEPOSITED LONG AMPHIBOLE FIBERS
- C DOSE CAN BE INTERMITTENT FOR CHRYSOTILE FIBERS
- CHRYSOTILE IN ENVIRONMENTAL
 SETTINGS IS UNLIKELY TO REPRESENT
 A SIGNIFICANT CANCER RISK

ENVIRONMENTAL MONITORING

A. HISTORIC MEASUREMENTS

1. Midget Empinger Dust Counts

2. PCM Fiber Counts

3. TEM - All Fibers - Counts

4. TEM - Gravimetric Estimation

5. TEM - PCME

B. RECOMMENDED MEASUREMENTS

TEM-Characterization of each fiber >5 mm in length by:
1. Length

2. Thickness 3. Composition (xrd)

C. Exposure RECONSTRUCTION e.g. Quebec, Charlston

1. Airborne chrysotile and tremolitefiles

2. Source of Charlston chrysotile (Thetford or Asbostos?)

6. RESEARCH OPPORTUNITIES

- 1. Comparative Toxicity Studies using longth and diameter specific fibers
 (Cite NIOSH Posters and CIITWORK)
- 2. Collection of Data on Beeleground,
 Environmental and Occupation Reposures to Airborne Filers and
 Determination of Exposure Index
 According to Empirical Health
 Relevant Index Developed by
 Berman and Crump

Southdown Quarry Study Summary of Possible Study Tasks NJDEP Expert Panel

Phase 1: Preliminary Investigation

- Task 1: Complete simple ranking of sources at the Quarry.

 Based upon existing emission inventories or information from Southdown.
- Task 2: Complete Characterization of Protocol structures Concentrations in Southdown Marble.

 From existing NJGS core data with re-analysis of cores and/or from further core sampling on site as necessary (Task 7).
- Task 3: Conduct A Reasonable Worst-Case Assessment of Exposure

 Model-based, using emission estimates from Tasks 1 and 2, and reasonable worst-case
 assumptions for dispersion parameters.
- Task 4: Conduct a Study of House Dust and Soil.

 Measurement of protocol structure concentration in accumulated household dust and in soil in and around the community.
- Task 5 Conduct a Study of Outdoor and Indoor Airborne Protocol Structure Concentrations.

 Short-term (3-6 weeks) sampling in conjunction with known and typical operating activities at Southdown Quarry, and controlled typical in-home activities.
- Task 6. Perform a summary risk characterization.

 Based on the results of Tasks 1 5 to determine whether the results indicate clearly that a significant risk does or does not exist resulting from Quarry emissions.

Phase 2: Quantitative Characterization of Transport and Exposure

- Task 7: Detailed horizontal and longitudinal sampling and characterization of Southdown Marble With detailed measurements, providing more definitive results than Task 2, if necessary.
- Task 8: Realistic Protocol structures Transport and Refine Modeling. With refined emissions data and site-specific meteorologic data.
- Task 9: Conduct Long-Term Indoor/Outdoor Air Sampling at Selected Residences. Approximately 6 months of sampling to include seasonal and quarry production variability.
- Task 10: Perform detailed risk characterization.

 Based on the results of Tasks 5, 6, and 7 to determine risk levels associated with Quarry operations and to serve as a guide to further Agency actions.